LF441 Low Power JFET Input Operational Amplifier

General Description
The LF441 low power operational amplifier provides many of the same AC characteristics as the industry standard LM741 while greatly improving the DC characteristics of the LM741. The amplifier has the same bandwidth, slew rate, and gain (10 kΩ load) as the LM741 and only draws one tenth the supply current of the LM741. In addition, the well matched high voltage JFET input devices of the LF441 reduce the input bias and offset currents by a factor of 10,000 over the LM741. A combination of careful layout design and internal trimming guarantees very low input offset voltage and voltage drift. The LF441 also has a very low equivalent input noise voltage for a low power amplifier.

The LF441 is pin compatible with the LM741, allowing an immediate 10 times reduction in power drain in many applications. The LF441 should be used where low power dissipation and good electrical characteristics are the major considerations.

Features
- 1/10 supply current of a LM741 200 µA (max)
- Low input bias current 50 pA (max)
- Low input offset voltage 0.5 mV (max)
- Low input offset voltage drift 10 µV/°C (max)
- High gain bandwidth 1 MHz
- High slew rate 1 V/µs
- Low noise voltage for low power 35 nV/√Hz
- Low input noise current 0.01 pA/√Hz
- High input impedance 10^12 Ω
- High gain V_O = ±10V, R_L = 10k 50k (min)

Typical Connection

Ordering Information
LF441XYZ
X indicates electrical grade
Y indicates temperature range
 “M” for military,
 “C” for commercial
Z indicates package type
 “H” or “N”

Connection Diagrams
Metal Can Package

Dual-In-Line Package

Note: Pin 4 connected to case.
Order Number LF441MH/883
See NS Package Number H08A

BIFET™ is a trademark of National Semiconductor Corporation.

©1995 National Semiconductor Corporation TL/H/9297

RRD 020M115/Printed in U. S. A.
Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>LF441A</th>
<th>LF441</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±22V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±38V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H Package</th>
<th>N Package</th>
<th>M Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation (Notes 2 and 9)</td>
<td>670 mW</td>
<td>670 mW</td>
<td></td>
</tr>
<tr>
<td>T_j max</td>
<td>150°C</td>
<td>115°C</td>
<td></td>
</tr>
<tr>
<td>θ_{JC} (Typical)</td>
<td>25°C/W</td>
<td>130°C/W</td>
<td></td>
</tr>
<tr>
<td>Board Mount in still air</td>
<td>165°C/W</td>
<td>185°C/W</td>
<td></td>
</tr>
<tr>
<td>Board Mount in 400 LF/min air flow</td>
<td>65°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temp. Range (Note 3)</td>
<td>$-65°C \leq T_A \leq 150°C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temp. Range</td>
<td>$-65°C \leq T_A \leq 150°C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 seconds)</td>
<td>300°C</td>
<td>260°C</td>
<td></td>
</tr>
</tbody>
</table>

Soldering Information
- Dual-In-Line Package: Soldering (10 sec.) 260°C
- Small Outline Package: Vapor Phase (60 sec.) 215°C, Infrared (15 sec.) 220°C
- See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

ESD Tolerance (Note 10)
- Rating to be Determined

DC Electrical Characteristics (Note 4)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF441A</th>
<th>LF441</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Input Offset Voltage</td>
<td>$R_S = 10 , k\Omega, T_A = 25°C$</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta V_{OS}/\Delta T$</td>
<td>Average TC of Input Offset Voltage</td>
<td>$R_S = 10 , k\Omega$ (Note 5)</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td>$V_S = \pm 15V$ (Notes 4 and 6)</td>
<td>$T_J = 25°C$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_J = 70°C$</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_J = 125°C$</td>
<td>10</td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td>$V_S = \pm 15V$ (Notes 4 and 6)</td>
<td>$T_J = 25°C$</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_J = 70°C$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_J = 125°C$</td>
<td></td>
</tr>
<tr>
<td>R_{IN}</td>
<td>Input Resistance</td>
<td>$T_J = 25°C$</td>
<td>10^{12}</td>
<td>10^{12}</td>
</tr>
<tr>
<td>A_{VOL}</td>
<td>Large Signal Voltage Gain</td>
<td>$V_S = \pm 15V, V_O = \pm 10V, R_L = 10 , k\Omega, T_A = 25°C$</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over Temperature</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>V_O</td>
<td>Output Voltage Swing</td>
<td>$V_S = \pm 15V, R_L = 10 , k\Omega$</td>
<td>$\pm 12 , %$</td>
<td>$\pm 13 , %$</td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Input Common-Mode Voltage Range</td>
<td></td>
<td>$\pm 16 , % $</td>
<td>$\pm 18 , %$</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-Mode Rejection Ratio</td>
<td>$R_S \leq 10 , k\Omega$</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>
DC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF441A</th>
<th>LF441</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSRR</td>
<td>(Note 7) Supply Voltage Rejection Ratio</td>
<td>80 100</td>
<td>70 90</td>
</tr>
<tr>
<td></td>
<td>IS</td>
<td>Supply Current</td>
<td>150 200</td>
<td>150 250</td>
</tr>
</tbody>
</table>

AC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF441A</th>
<th>LF441</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SR</td>
<td>Slew Rate $V_S = \pm 15\text{V}, T_A = 25^\circ\text{C}$</td>
<td>0.8 1</td>
<td>0.6 1</td>
</tr>
<tr>
<td></td>
<td>GBW</td>
<td>Gain-Bandwidth Product $V_S = \pm 15\text{V}, T_A = 25^\circ\text{C}$</td>
<td>0.8 1</td>
<td>0.6 1</td>
</tr>
<tr>
<td></td>
<td>e_n</td>
<td>Equivalent Input Noise Voltage $T_A = 25^\circ\text{C}, R_S = 100\Omega, f = 1\text{kHz}$</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>i_n</td>
<td>Equivalent Input Noise Current $T_A = 25^\circ\text{C}, f = 1\text{kHz}$</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

Note 2: For operating at elevated temperature, these devices must be derated based on a thermal resistance of R_{th}.

Note 3: The temperature range is designated by the position just before the package type in the device number. A “C” indicates the commercial temperature range and an “M” indicates the military temperature range. The military temperature range is available in “H” package only.

Note 4: Unless otherwise specified the specifications apply over the full temperature range and for $V_S = \pm 20\text{V}$ for the LF441A and for $V_S = \pm 15\text{V}$ for the LF441. V_{OS}, I_{OS}, and I_{IS} are measured at $V_{CM} = 0$.

Note 5: The LF441A is 100% tested to this specification.

Note 6: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T_j. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_D = T_j - T_A = \theta_{ja} P_D$ where θ_{ja} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. From $\pm 15\text{V}$ to $\pm 5\text{V}$ for the LF441 and from $\pm 20\text{V}$ to $\pm 5\text{V}$ for the LF441A.

Note 8: Refer to RETS441X for LF441MH military specifications.

Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Note 10: Human body model, 1.5 kΩ in series with 100 pF.

Typical Performance Characteristics

- **Input Bias Current**
- **Input Bias Current**
- **Supply Current**
- **Positive Common-Mode Input Voltage Limit**
- **Negative Common-Mode Input Voltage Limit**
- **Positive Current Limit**
Typical Performance Characteristics (Continued)

- **Negative Current Limit**
 - Voltage sag: $V_{in} = \pm 15V$
 - Temperature range: $-15\degree C$ to $125\degree C$

- **Output Voltage Swing**
 - Supply voltage range: 0 to $20 V$
 - Temperature range: $-30\degree C$ to $125\degree C$

- **Output Voltage Swing**
 - Load resistance: $R_L = 10k$
 - Temperature range: $-30\degree C$ to $125\degree C$

- **Gain Bandwidth**
 - Unity gain bandwidth: $1 MHz$
 - Temperature range: $-25\degree C$ to $125\degree C$

- **Bode Plot**
 - Frequency range: $0.1 MHz$ to $10 MHz$
 - Gain and phase response

- **Slew Rate**
 - Temperature range: $-50\degree C$ to $125\degree C$

- **Distortion vs Frequency**
 - Frequency range: $10 Hz$ to $10k Hz$
 - Distortion vs Frequency plot

- **Undistorted Output Voltage Swing**
 - Frequency range: $1k Hz$ to $100k Hz$

- **Open Loop Frequency Response**
 - Frequency range: $1 Hz$ to $100k Hz$

- **Common-Mode Rejection Ratio**
 - Frequency range: $1 Hz$ to $10k Hz$

- **Power Supply Rejection Ratio**
 - Frequency range: $1 Hz$ to $10k Hz$

- **Equivalent Input Noise Voltage**
 - Frequency range: $1 Hz$ to $100k Hz$

TL/H/9207–6
Typical Performance Characteristics (Continued)

Simplified Schematic

Pulse Response $R_L = 10\, \Omega$, $C_L = 10\, \mu\text{F}$

Small Signal Inverting
Pulse Response $R_L = 10 \, \text{k\Omega}, C_L = 10 \, \text{pF}$ (Continued)

Small Signal Non-Inverting

Large Signal Inverting

Large Signal Non-Inverting
Application Hints

This device is a low power op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain, eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur.

The amplifier is biased to allow normal circuit operation with power supplies of ±3V. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

Detailed Schematic

The amplifier will drive a 10 kΩ load resistance to ±10V over the full temperature range.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket, as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input to AC ground) set the frequency of this pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency, of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency, a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
Physical Dimensions inches (millimeters)

Metal Can Package (H)
Order Number LF441MH/883
NS Package Number H08A

Dual-In-Line Package (M)
Order Number LF441CM
NS Package Number M08A
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor
Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018

National Semiconductor
Europe
Fax: (+49) 0-180-530 85 86
Email: onwge@sem2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Français Tel: (+49) 0-180-532 93 58
Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor
Hong Kong Ltd.
139 Floor, Sha Tin Block,
Ocean Centre, 5 Canton Rd.,
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.